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ABSTRACT
We present a novel depth image enhancement approach for RGB-D cameras such as the Kinect. Our approach
employs optical flow of color images for refining the quality of corresponding depth images. We track every
depth pixel over a sequence of frames in the temporal domain and use valid depth values of the same point for
recovering missing and inaccurate information. We conduct experiments on different test datasets and present
visually appealing results. Our method significantly reduces the temporal noise level and the flickering artifacts.
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1 INTRODUCTION
Today, commodity RGB-D cameras such as the Mi-
crosoft Kinect are very popular because of their afford-
ability and the capability to output color and depth im-
ages at a high frame rate. They are widely used in com-
puter graphics and virtual reality applications as a low-
cost acquisition device.

However, while the color images contain fine details of
the scene, the depth images have lower spatial resolu-
tion and suffer from extensive noise. The disturbance
has a strong temporal component and is perceived
as an annoying flickering, even if camera and scene
are static. Depth images also contain holes where no
depth measurements are available. See Figure 1 to
get an impression of the artifacts. Before the depth
data can be used in an application, it usually has to be
enhanced. There are several existing approaches for
this problem that are mostly based on spatial filtering
[Chen et al., 2012, Camplani and Salgado, 2012a,
Camplani and Salgado, 2012b, Garcia et al., 2013,
Yang et al., 2013]. But due to the flickering nature of
depth values those approaches oftentimes do not offer
satisfactory results.

There are only very few methods that consider the
temporal aspect of noise [Matyunin et al., 2011,
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Figure 1: Color and depth images captured using a
Kinect RGB-D camera. The depth image contains noise
and flickering artifacts while the color image is more
robust.

Islam et al., 2015, Kim et al., 2010]. One reason for
this may be the trouble with blurry object boundaries
and ghosting artifacts introduced by temporal filtering
of dynamic scenes. This happens as temporal filters
usually combine depth values of the same pixel
from different frames. When the part of the scene
represented by that pixel changes over time, which is
quite probable in a dynamic scene, then mixing the
corresponding depth values is not valid and leads to the
mentioned artifacts.

In this work we solve the aforementioned challenges
and present a new temporal filtering approach for depth
images. We propose to track the movement of objects
in the depth image to consistently apply the temporal
filter on the same parts of the scene, even if it moves.
Based on the detected pixel movements, our method is
able to enhance the image quality with standard filter-
ing techniques applied to the temporal domain. How-
ever, tracking movements in depth image sequences is
a very complicated problem which is even more ham-
pered by their unstable nature, as mentioned above. To
circumvent this difficulty, we present a new method for
the tracking of movements. As RGB-D cameras simul-



taneously provide color and depth image, we decided to
estimate the optical flow of consecutive color images in
order to transfer the result to the corresponding depth
images. Our idea benefits from the fact that color and
depth cameras are usually located close to each other,
that is, on the same baseline and with a very small off-
set. Therefore, we may safely assume that the motion
of the imaged scene is induced almost equally on both
cameras which eases the transfer.

Having a sound estimation of movement for all consec-
utive depth frames, we are able to trace back a certain
displacement history for each pixel. This provides a one
dimensional filtering field for every pixel, which can be
processed with any standard 1D filter kernel, such as a
simple Gaussian filter. We show that this way largely
replaces inaccurate or noisy depth values by valid and
stabilized ones. The method can be easily combined
with other refinement strategies such as hole filling ap-
proaches. We validate our enhancement strategy using
two publicly available test datasets and present visually
appealing results.

2 RELATED WORK
There are a number of existing approaches that cope
with the noise in depth images. Most of them represent
classical spatial filtering methods. However, our work
is not the first one proposing a temporal approach. A
very relevant technique with respect to this article is
presented in [Matyunin et al., 2011]. They propose a
motion compensation strategy, but only for temporally
smoothing depth images. The missing depth pixels are
still being recovered from the neighboring pixels, and
not from the temporally successive pixels. Further-
more, their approach is an offline approach. An online
temporal approach is given in [Islam et al., 2015]. The
authors propose to consider the history of depth pix-
els in the time domain but they do not track the move-
ments. They use a simplified but well parallelizable
least median of squares filter to robustly stabilize the
depth values. Although their method performs well for
static parts of the scene, it exhibits a lot of ghosting
artifacts in dynamic parts. In [Kim et al., 2010] the au-
thors propose a combined spatial and temporal depth
enhancement method which even applies motion flow
between successive color images to infer information
about object motion in the corresponding depth images.
However, they basically ignore this data in the dynamic
parts of the depth images as they use it only to detect
stationary parts. Based on this, they apply a bilateral
filter to improve the quality which naturally fails in dy-
namic parts. [Hui and Ngan, 2014] enhance depth im-
ages captured from a moving RGB-D system. They
also estimate the optical flow of consecutive color im-
ages. However, instead of building a temporal filter on
top of the obtained data, their method estimates addi-

tional depth cues from the flow which are then com-
bined with the original depth images. Their method is
intended for mobile setups and cannot be applied to sta-
tionary cameras as mainly considered in our case.

Apart from that there are many standard spatial
filtering approaches. However, some of them in-
corporate the information from the color image
into the filtering, which relates them to our work.
One, proposed in [Camplani and Salgado, 2012a,
Camplani and Salgado, 2012b], uses a joint bilateral
filter which combines depth and color information.
It is working well for static scenes only. The work
presented in [Chen et al., 2012] also uses a joint
bilateral filter to fill the holes in the depth images.
The corresponding color images are used to find
and remove wrong depth values near to the edges.
Their approach fails to work well for parts where
the color image contains a dark region. Other works
that incorporate color information for enhancing the
quality of the corresponding depth images are pre-
sented in [Garcia et al., 2013, Yang et al., 2013]. These
approaches provide quite good results in real-time. To
sum up, the above mentioned approaches are reducing
the noise by using spatial filters mostly. But overall
there are few temporal filtering methods that remove
the noise caused by moving objects while having
stationary cameras.

3 PROPOSED METHOD
To fix the unstable nature of depth pixels captured
by RGB-D cameras, we propose a new strategy that
enables temporal filtering by keeping track of depth
pixels in the time domain. We save a movement
history for each depth pixel among a sequence of
consecutive frames which is used to validate and
correct pixels values. For tracking depth pixels in
the time domain, our method employs optical flow
[Radford and Burton, 1978], which describes the
probable motion of pixels in pairs of consecutive depth
frames of a video stream. As the depth stream is too
noisy for the accurate estimation of optical flow, we
calculate optical flow for the much more stable color
video, usually delivered alongside depth data, and
apply it for the depth pixels.

In our framework, we assume that an RGB-D sensor
continuously provides a sequence of color and depth
frame pairs (Ii,Di). By Ii(x,y) we denote the color of
pixel (x,y) in the i-th color frame. Similarly, Di(x,y)
refers to the depth value of pixel (x,y) in the i-th depth
frame. While receiving this data in real time, our
method always keeps the latest n image pairs. For every
frame (Ip,Dp) presently delivered, we use the informa-
tion in the whole subsequence to produce an improved
version D′p−m of the depth image Dp−m in the sequence.
Hence, every output frame is build on an m-element



preview and an (n−m− 1)-element history. Clearly,
the value of n basically affects memory consumption
whereas the value of m influences the latency of our
method.

Each incoming pair (Ip,Dp) of frames is firstly inserted
at the beginning of our monitored sequence while the
oldest one, (Ip−n,Dp−n), is discarded. Next, we estab-
lish two motion fields Mp,Np−1 between the new color
frame Ip and the previously first color frame Ip − 1.
While Np−1 describes the forward, that is, natural mo-
tion of pixels in time, Mp helps to trace back move-
ments. In Np−1, each pixel (x,y) holds a 2D vector
(u,v) describing the path taken by the pixel (x,y) from
Ip− 1 to Ip. More precisely, Np−1(x,y) = (u,v) states
that the color value of pixel (x,y) in the image Ip−1 can
be traced back to the pixel (x+u,y+v) in the image Ip,
that is,

Ip−1(x,y)≈ Ip(x+u,y+ v). (1)

While this makes it possible to follow the movement of
a pixel along the sequence of frames, it does not help
very much to tell where a pixel came from. Hence, here
we use Mp where Mp(x,y) = (u′,v′) states that the color
value at Ip(x,y) can be traced back to the previous frame
at Ip−1(x+u′,y+ v′). As we perform this procedure in
every step, we can assume that we have motion fields
Mi and Ni−1 for the pair Ii and Ii−1 of consecutive color
frames for all i in {p, ..., p−n+1}.
In the next step, we apply the estimated motion fields of
the color image sequence to track the history and follow
the future of pixels in the corresponding depth images.
In particular, for every depth pixel (x,y) in Dp−m, we
traverse through the available n depth frames following
the respective motion vectors. That means, we obtain a
sequence (xp,yp),(xp−1,yp−1), . . . ,(xp−n+1,yp−n+1) of
pixel coordinates by setting

(xi,yi),=



(x,y), if i = p−m,

(xi−1,yi−1) +

Ni−1(xi−1,yi−1), if p≤ i < p−m,

(xi+1,yi+1) +

Mi+1(xi+1,yi+1), if p−m < i < n.

Ideally, this sequence accurately describes the past
and prospective motion of the scene object rep-
resented at the pixel (x,y) in frame Dp−m. That
means, we can represent the depth of this object in
another sequence dp,dp−1, ...,dp−n+1 of m prospective
and (n − m − 1) historic depth values by defining
dp−i = Dp−i(xp−i,yp−i) for all i ∈ {0, . . . ,n − 1}.
Figure 2 illustrates this concept.

Recall that the motion fields are derived from the color
image. That means for the identified depth sequence
that we might get slightly varying depth values due to
the z-movement of objects and because of the present
noise.

Figure 2: Motion compensated sequence of depth val-
ues. For each pixel (x,y), we iterate over a short se-
quence of prospective and historic depth frames using
the motion fields M and N.

Finally, to stabilize the noise in depth image Dp−m, we
basically filter the n depth values of every pixel, which
represents a temporal filtering approach. In our method
we apply a weighted filter as follows:

Dp−m(x,y) =
∑

n−1
i=0 ωidp−i

∑
n−1
i=0 ωi

(2)

The weights ωi can be chosen to model certain filter
kernels, as for instance a Gaussian filter:

ωi = e−(m−i)2
(3)

Beside static kernels like this, we also support motion
dependent kernels, where the weight ωi is determined
by the amount of motion in frame Dp−i at pixel (x,y),
that is, by the length of the vector Md−i(x,y), respec-
tively of Nd−i−1(x,y). This can be used to adaptively
reduce the impact of highly dynamic depth frames in
which a misinterpretation of real movements is more
likely.

4 EXPERIMENTS
For experiments, we fixed the parameters of the method
described in Section 3. To keep the latency of our
approach low and minimize the ghosting artifacts, we
chose to consider a 5-frame history by letting n = 5
and we set m = 0. This means that there was no pre-
view. Furthermore, to keep the setup simple and to
demonstrate our method’s potential, we decided to just
use a plain averaging filter in the 1D temporal domain.
Hence, we set ωi = 1 for all i. The optical flow was esti-
mated in real time by the method of [Brox et al., 2004]
implemented in hardware.

To test the performance of our approach, we have ap-
plied different datasets captured with a Kinect cam-
era, each containing at least one moving subject or ob-
ject. Beside some self-created datasets, we conducted
experiments on two publicly available datasets from
[Camplani and Salgado, 2014]. Figure 3 demonstrates
the method’s visually appealing results using our own
test sets. Apparently, as seen in the right image, noise
and missing depth information, that essentially disturb



the original depth frame in the left image are notice-
ably fixed or at least reduced by our approach. We like
to point out, that the visual improvement covers both,
static and dynamic parts of the scene. Furthermore, we
also significantly remove flickering, that is, temporal ar-
tifacts.

Figure 3: Results for our own datasets. (a) original raw
depth images. (b) depth images enhanced by our ap-
proach.

Using the datasets from [Camplani and Salgado, 2014],
we can also compare the performance of our approach
to another state of the art spatial filtering tech-
nique for depth image enhancement as described
in [Garcia et al., 2013]). For both sets, as depicted
in Figure 4, our method fixes most of the missing
information and reduces temporal noise for both, static
and dynamic parts. Beside that, we get nicer and finer
edges around objects.
Limitations of our approach are twofold. Firstly, miss-
ing data or noise that stays persistently in one region of
the depth image sequence can not be recovered by our
temporal filtering approach. In this case, spatial filters,
as presented in [Garcia et al., 2013], may perform bet-
ter. Secondly, artifacts introduced by the motion fields
can essentially influence the quality of the output. Even
though the color images are more stable and of a higher
resolution, it happens that the estimation of optical flow
based on the RGB data does not correlate well with the
actual movement of objects in the image. Therefore, we

sometimes get invalid motion vectors which deteriorate
the estimated history of depth values. In particular, we
observe that fast movements still cause slight ghosting
artifacts, especially for bigger parameter values of n.

Our current implementation runs on the GPU and al-
lows to achieve 10 frames per second. At least in case
of average temporal filtering, this speed is basically in-
dependent of the choices for the parameters m and n,
which only affect memory consumption and latency.
For other filter kernels, which do not allow for an in-
cremental update, the performance will also depend on
n.

5 CONCLUSION
In this work, we have introduced a new strategy to en-
hance the quality of depth images using optical flow es-
timated by the corresponding color images. We have
tested our approach with different datasets and pre-
sented visually appealing results. It remains future
work to fine-tune the method for its full potential by
evaluating different parameters m and n and higher or-
der temporal filters. It would also be nice to con-
sider longer histories and even preview to some extend.
However, in this case the small errors which build up
over time would also have an increased impact. There-
fore, to address this problem, we will consider a Gaus-
sian filter which levels the impact of history and pre-
view depending on the temporal distance to the current
frame. Aside from that, we plan to combine our new
method with other refinement strategies. For instance,
we consider to include a spatial filtering into our tem-
poral approach for a more robust enhancement.
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